Regen Network Ecological State Protocols B. Deriemaeker, G. Booman, T. Kazantsev, N. Assareh, M. Rada Version~0.2 May 13, 2018 # Contents | st or | Figures | 4 | |-------|--|--| | Dat | a Sources | 5 | | 1.1 | Remote Sensing | 5 | | | | 5 | | | | 5 | | | | 6 | | 1.2 | | 6 | | | | 6 | | 1.3 | | 7 | | | | 7 | | | | 7 | | | | 7 | | | | 7 | | | | 7 | | | | 8 | | 1.4 | | 8 | | 1.5 | IoT Ecological Monitoring Sensors | 9 | | 1.6 | User Input | 10 | | | • | | | | O Company of the Comp | 10 | | | | 10 | | | | 11 | | | | 11 | | | | 11 | | | | 12 | | | | 12 | | | | 12 | | 2.8 | Air Quality Protocol | 13 | | Car | hon Sequestration Indicators | 13 | | | | 13 | | | | 14 | | | | 15 | | | | 15 | | | | 16 | | | | 17 | | | | 17 | | | | 18 | | | | 19 | | | | 20 | | | | 20 | | | | 20 | | | 1.1
1.2
1.3
1.4
1.5
1.6
Pen
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
Car
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11 | Data Sources 1.1 Remote Sensing 1.1.1 Optical and Near Infrared (NIR) sensors 1.1.2 Radar 1.1.3 LiDAR 1.2 Platforms 1.2.1 Unmanned Aerial Vehicles (Drones) 1.3 Satellites 1.3.1 Landsat 1.3.2 MODIS 1.3.3 Sentinel-2 1.3.4 Sentinel-1 1.3.5 Commercial satellites 1.3.6 Synthetic Aperture Radar (SAR) 1.4 GIS Datasets 1.5 LoT Ecological Monitoring Sensors 1.6 User Input Pending Protocol 2.2 Pollinator Density Protocol 2.3 Water Quality Protocol 2.4 Habitat Quality Protocol 2.5 Erosion and Sediment Delivery Protocol 2.6 Urban Tree Protocol 2.7 Aquifer Carbon Sinks Protocol 2.8 Air Quality Protocol 2.9 Air Quality Protocol 3.1 Soil Carbon 3.2 Biological Indicators 3.3 Above Ground Biomass (AGB) 3.4 Surface Water Quality 3.5 Water and Nutrient Runoff 3.6 Land Conversion 3.7 Biodiversity 3.8 Sediment Delivery and Soil Loss Due to Erosion 3.9 Net Primary Productivity (NPP) 3.10 Covariables 3.11 Climate: Rainfall Climate | | 4 | Main Indicators for Carbon Sequestration | 2 1 | |----|--|------------| | Re | eferences | 24 | | List | of | Figures | |------|----|----------------| |------|----|----------------| 1 Estimated Carbon Sequestration Potential [NM08] $\dots 17$ # 1 Data Sources ### 1.1 Remote Sensing There are three main types of sensors used in the protocols of Regen Network: - Optical and Near Infrared - Microwave (Radars) - Laser scanners (LiDARs) #### 1.1.1 Optical and Near Infrared (NIR) sensors Optical and NIR sensors are widely used in the assessment and analysis of a wide range of characteristics of different ecosystems. This is due to a high variety of reflective properties of plants under different growth stages and environmental conditions in the spectral regions across different species. Optical (or visual) reflectance (400-750 nm) of plants is determined mainly by pigmentspredominantly chlorophyll and carotenoids and to a lesser degree by minor pigments (i.e. xanthophylls). NIR reflectance (750-1000 nm) is determined by cellulose from plant cell walls. Going further to short-wave infrared (SWIR) spectrum (1000-2500 nm), it becomes possible to detect water effects by waterabsorption bands at 1400 and 1900 nm. Optical and near infrared (NIR) sensors can capture light in just a few or in many spectral bands. Dependent on the quantity of spectral bands, the sensors are classified into multispectral (usually 2-5 wide bands) and hyperspectral (usually 100 or more narrow bands). Specially-designed multispectral cameras are widely used. In contrast to regular RGB cameras where the signal is split inside the sensor by filtering, professional multispectral cameras usually have separate lenses and sensors for each spectral channel. In hyperspectral sensors, the division of the signal into many narrow bands is achieved by light diffraction by prisms or grates. Light intensity is also divided between the channels, which causes a need for longer exposure or a bigger sensor matrix. Due to such complexity, hyperspectral sensors are used less often, although they are superior in many ways. RGB, multispectral, and hyperspectral imagery all enable the acquisition of ecological information by applying algorithms to the different spectral bands of the imagery. #### 1.1.2 Radar Microwave sensors are also known as radar. They measure the strength of the back-scattered signal from a surface. Synthetic-aperture radars (SARs) use the motion of an antenna to create high-resolution 2-D and 3-D maps. SARs have a lower signal-to-noise ratio compared to optical sensors but can be operated under almost all weather and light conditions. SARs are used in cases when optical data is not available, for example at night or above clouds. #### 1.1.3 LiDAR LiDAR stands for Light Imaging, Detection, and Ranging. It emits and detects a reflected laser beam (usually within 600-1000 nm) to reconstruct an object's shape by the creation of point clouds. LiDAR sensors are not limited by the same signal saturation for the estimation of Above Ground Biomass (AGB) as optical and radar sensors. This is because LiDAR retrieves canopy height from the distance measurements between the sensor and the target in contrast to optical and radar, which correlate AGB with spectral reflectance or radar backscatter signals. A high LiDAR point density allows for more ground returns to be obtained through gaps in the canopy. In particular, airborne and ground-based imaging LiDARs provide direct and very accurate measurements of canopy height. LiDAR is used primarily on UAVs. There is no LiDAR satellite in orbit at the present time, but some are in the development stage. #### 1.2 Platforms #### 1.2.1 Unmanned Aerial Vehicles (Drones) Using drones for remote sensing has become extremely popular because of progress in robotics. Relatively affordable amateur drones such as the DJI Mavic Pro or 3DR Solo can be effective remote sensing instruments
providing hundred-hectare maps within hours. In addition to the RGB camera that the drone is usually equipped with, manufacturers provide NIR-modified cameras and multispectral cameras designed specially for drones. One of the simplest yet most effective cameras is MapIR in which the blue channel is replaced with NIR by means of filters. Different versions have either a Red-NIR or a Red-Green-NIR channel combination to allow the mapping of various vegetation indices utilizing these bands. Tetracam is one of the most experienced manufacturers of airborne multispectral cameras. They started by producing cameras for piloted planes and heavy drones. Recent models such as Tetracam ADC-Micro can be mounted on a small UAV. Tetracam served as the prototype for several novel developments such as Micasense and Sentera. These cameras also have multi-lens construction and capture signals in separate channels. For instance, Micasense Parrot Sequoia has Green, Red, Red-Edge, and NIR bands. In addition, it is equipped with a regular RGB sensor. Despite hyperspectral cameras being much more complicated and expensive, there are some devices developed specially for UAV—for instance, Gamaya with about 50 narrow spectral bands in visual and NIR regions. Another approach for obtaining hyperspectral data onboard a UAV is by using a single-beam spectrophotometer instead of a camera. For example, Ocean Optics STS developers kit has been used for this purpose. UAVs can be equipped with LiDAR—for example RIEGL VUX-1UAV or YellowScan Mapper. No commercial implementation of Synthetic Aperture Radar (SAR) onboard a light drone has been reported. There are some prototypes that hopefully will be mass-produced in future. #### 1.3 Satellites #### 1.3.1 Landsat Landsat has circled the earth every 99 minutes and scanned the whole surface of the earth every 16 days since 1972. Satellite images are freely available and come in 30 m spatial resolution and 11 spectral bands. #### 1.3.2 **MODIS** MODIS stands for Moderate Resolution Imaging Spectroradiometer and is a sensor often used for ecosystem monitoring. The sensor is carried onboard the TERRA satellite launched in 1999. MODIS has 36 spectral bands in visual and infrared regions with spatial resolution between 250-1000 m. 250 m resolution refers to the Red and NIR bands which are the most useful for plant study. There are also 5 other bands in the Blue, Green and SWIR regions with 500 m resolution. With the 99-minute orbit of TERRA, MODIS maps the whole Earth every 1 - 2 days. MODIS data is freely available. #### 1.3.3 Sentinel-2 In 2015, Sentinel-2a satellite was launched and was followed by the Sentinel-2b in 2017. This constellation of satellites has been developed by the European Space Agency for land monitoring with a strong focus on vegetation. Both satellites are equipped with a Multi-Spectral Instrument (MSI) with 13 spectral channels in the visible, NIR and SWIR regions. Spatial resolution in Blue, Green, and NIR bands is equal to 10 m. There are 3 Red Edge bands, 1 narrow NIR band, and 2 SWIR bands with 20 m resolution. The other 3 bands refer to atmospheric study and have a 60 m resolution. By combining both satellites, an update of freely available data occurs every 5 days. #### 1.3.4 Sentinel-1 In 2014 and 2016, Sentinel-1a and Sentinel 1b were launched. The satellites carry a single C band SAR capable to deliver information about land cover with 5 m spatial resolution every 16 days. #### 1.3.5 Commercial satellites Besides those listed above, there are a number of commercial satellites with their image data available for purchase. Spatial resolution of commercial satellites is much higher (1 to 2 meters). For example, Pleiades HR 1A and Pleiades HR 1B constellation developed by AIRBUS Defence and Space provides data in Blue-Green-Red-NIR bands with 2 m resolution and 26-day update. World-View-3, owned by DigitalGlobe, updates every day and has a super-spectral, high resolution camera with 29 spectral bands. IKONOS, QuickBird, GeoEye1, and Worldview 1-2 and 4 are other commercial satellites operated by Digital Globe. Planet Labs has over 192 satellites in orbit and refreshes its dataset daily. They operate the PlanetScope, RapidEye, and SkySat constellations and have a maximum resolution of 1 meter and 4 or 5 spectral bands. #### 1.3.6 Synthetic Aperture Radar (SAR) Satellites with Synthetic Aperture Radar (SAR) orbit the Earth in a sunsynchronous polar Low Earth Orbit (LEO) [UNA18]. Data acquisitions can be made at any time of day or night and independent of cloud coverage, collecting both amplitude and phase data. The SAR satellites have repeating paths which, using two phase datasets for the same location at different times, allows for interferometric SAR (InSAR) showing relative ground displacements between the two datasets along the direction of the radar beam. The SAR satellites operate at designated frequencies with L-band, C-band, and X-band being the predominate wavelengths. Below is a chart of past, present, and projected SAR satellite missions. Various agencies support the different SAR missions: - European Space Agency (ESA): ERS-1, ERS-2, Envisat, Sentinel-1 - Japan Aerospace Exploration Agency (JAXA): JERS-1, ALOS-1, ALOS-2 - Canadian Space Agency (CSA): Radarsat-1, Radarsat-2, Radarsat constellation - Deutsches Zentrum fr Luft- und Raumfahrt e.V. (DLR): TerraSAR-X, TanDEM-X - Indian Space Research Organization (ISRO): RISAT-1, NISAR (w/NASA) - Comisin Nacional de Actividades Espaciales: SAOCOM - Italian Space Agency (ASI): COSMO-Skymed - Instituto Nacional de Tcnica Aeroespacial (INTA): PAZ - Korea Aerospace Research Institute (KARI): KOMPSat-5 - National Aeronautics and Space Administration (NASA): NISAR (w/ISRO) #### 1.4 GIS Datasets Open GIS datasets enable an integration of global, regional, and local data. The inclusion of these information sets enables correlation of ecosystem data, enhanced classification, and identification of specific areas of interest. The datasets that will be integrated fall into the following categories: - Hydrological data - Conservation data - Point-clouds and Digital Elevation Models (DEM) - Climate data - Air quality data - Exceptional biodiversity hotspots - Regional and national soil databases - Threatened species - Historical changes in global land cover - Socioeconomic data - Coastal datasets - Benthic cover - Different ecological classifications - Watershed boundaries - Forest cover and evapotranspiration datasets - Agriculture # 1.5 IoT Ecological Monitoring Sensors The sensors used in the different algorithms and protocols enable the acquisition of real time ecological information in a variety of different categories. Internet of Things (IoT) environmental monitoring is especially relevant and important in the domains of air pollution, agriculture, soil, water quality and weather. Below is a list of relevant sensors for Regen Network protocols and algorithm development. Sensors allow cross correlation of different data sources and a realtime data feed based on actual time-stamped ecosystem data. List of the relevant sensors for Regen Network protocol and algorithm development: - Air pollution and emissions (including forest fires): - Oxygen - NO2 - SO2 - Hydrocarbons - CO - CO2 - PM1, PM2.5, PM10 - Ozone - Hydrogen Sulfide - Ammonia - Acetylene - Agriculture - Nitrogen - Soil methane emission - Soil spectrometer - Soil probe - Rainfall - Rainfall drop size and distribution - Canopy temperature - Leaf wetness - Soil heat flux - Stomatal conductance - Soil - Soil water - Soil carbon - Soil nitrate - Soil potassium - Soil phosphorus - Soil aeration - Soil respiration - Soil nitrogen - Soil texture - Soil organic matter - Photosynthetic photon flux density - Gas flux - Carbon exchange - Color - pH • Water Quality - Bromide Ion (Br-) - Calcium Ion (Ca2+) - Chloride Ion (Cl-) - Cupric Ion (Cu2+) - Fluoride Ion (F-) - Iodide Ion (I-) - Chlorophyll a - Blue-Green Algae - Rhodamine WT - Colorimeter pH - Full wavelength spectrum spectrophotometer - UV-VIS spectrophotometer • Weather stations Wind speed and direction - Rainfall distribution - Temperature - Humidity ## 1.6 User Input In addition to data collected from the technological sources above, there is also a strong role for data generated through human observations. Organizations such as Savory Institute are leading the way with dynamic and peer reviewed methodologies for land stewards to measure ecological outcomes and use that information to adapt management practices to increase both profit and ecosystem health [Eyk17]. User Input also refers to data collected for the Data Quality Protocol such as ratings of other data or algorithms, data collected through third party apps, and Eco-Apps built on top of Regen Ledger. These data sources are especially importable for the Ecological Supply Protocols (ESPs) so as to link customers back to the source of the products they enjoy. # 2 Pending Protocols #### 2.1 Endangered Species Habitat Protocol As of 2017, the IUCN reported over 25,000 threatened species; those include species listed as Critically Endangered (CR), Endangered (EN), or Vulnerable (VU) [IUC17]. The endangered species habitat protocol would use satellite data, GIS datasets, and smart IoT monitoring to track and map habitat for endangered species, identify and predict their movements, and help direct conservation efforts towards certain areas. The protocol could allow manufacturers to make claims about not containing materials derived from either endangered species or having directly impacted the habitat of endangered species. It can also inform botanists, wildlife managers and governments on how to optimize the boundaries of reserves and fund conservation efforts based on updated species, topography, soil, precipitation, landcover and climatic data. Thus, the endangered species habitat protocol could optimize to achieve the highest rate of preservation while balancing
social and economic needs with habitat and species conservation. # 2.2 Pollinator Density Protocol Globally, thirty-five percent of food crop production depends on pollinators. Agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale [KVC⁺07]. For bees to persist on a landscape, they need two things: suitable places to nest and sufficient food (predicated by floral quality indicators) near their nesting sites [inv18]. By pairing land use to nesting suitability and floral resources across seasons, this protocol would be able to verify likeliness of pollinator density and match sensor measurements with satellite predicted pollinator visitation rates. ### 2.3 Water Quality Protocol Water pollution has many different causes; these include but are not limited to sewage, nutrients, plastics, chemical, radioactive compounds, oil, and wastewater. By developing this water quality protocol, the quality of both surface and groundwater could be tied to verifiable sensor input and satellite data. Water quality monitoring systems could measure dissolved oxygen, temperature, turbidity, Chlorophyll a (chl-a), and many more factors correlated to global water pollution. Because of the high temporal coverage, Landsat imagery has been widely used for chl-a assessment. For rivers and other cases that need more spectral and spatial resolution, the multispectral ALOS/AVNIR-2, IKONOS, and hyperspectral CASI and AISA imagery has successfully been used to determine turbidity and Total Suspended Solids (TSS). #### 2.4 Habitat Quality Protocol Habitat is of a high quality when it is relatively intact and has the structure and function within the range of historic variability. Habitat quality depends on a habitat?s proximity to human land uses and the intensity of these land uses. Generally, habitat quality is degraded as the intensity of nearby land-use increases [NVJS01] [McK02] [For03]. The habitat quality protocol would measure the distance to the anthropogenic impact, identify the location (upstream or downstream), and the magnitude of the landscape threat. In order to assess externalities from the surroundings, the choice of appropriate spatial units is a key decision that will influence most aspects of the habitat quality protocol. The watershed is a relevant eco-geographic spatial unit to analyze because it possesses biogenic and hydroclimatic integrity as well as having a socioeconomic and cultural identity. By using smart IoT monitoring combined with high resolution satellite imagery and GIS datasets, the habitat quality protocol could help protect the world?s most sensitive habitats and allow decision makers to incorporate this protocol into their legal frameworks. # 2.5 Erosion and Sediment Delivery Protocol We have lost a third of our arable soils to erosion. Human activity and related land use change continues to be the primary cause of accelerated soil erosion, which has substantial implications for nutrient and carbon cycling, land productivity and in turn, worldwide socio-economic conditions [BLMP17]. The erosion and sediment delivery protocol would rely on the latest erosion and sediment delivery models, GIS datasets, and real-time erosion sediment delivery monitoring using satellite and UAV. It has never been more important to re-engineer our agricultural system and this protocol will incentivize and reward ecological regeneration that combats erosion and rebuilds our soils. #### 2.6 Urban Tree Protocol In our modern cities, trees provide cleaner air, lower stress, cooler temperatures, reduced flood risk, and increased biodiversity. While the importance of trees is clear, they still get cut down in order to make space for city expansion. The urban tree protocol could calculate the canopy projected areas of trees based on high resolution satellite data and identify the cooling effect of trees using UAV thermal imagery. The protocol could help tree advocacy groups to better protect our urban forests and help governments prioritize and incentivize certain areas for planting. # 2.7 Aquifer Carbon Sinks Protocol Massive aquifers beneath the world?s deserts might store more carbon than all living plants [LWHT15]. When fossil fuels are burned, 30 percent of the CO2 is trapped in the atmosphere, causing warming, 40 percent ends up in the oceans, and the rest winds up elsewhere, mostly in plants which absorb it through photosynthesis. Not all CO2 taken up by plants is used and converted into sugars and oxygen. Scientists have been trying to figure out where all the ?leftover carbon? ends up in the planet?s system. One of these many places might be beneath the world?s deserts. Chinese researchers sampled water from an underground aquifer in the Tarim Basin and found it stores vast quantities of carbon dioxide as a result of human activities, particularly farming. If the same holds true for all the desert aquifers around the world, the trapped carbon would amount to about a quarter more than the amount stored in living plants on land. Previously, the carbon trapped in aquifers was thought to be negligible. Clearly, there is significant carbon stored in aquifers that could be washed up in the atmosphere if disturbed. Moreover, if the process identified in the new study happens in the same way in other regions around the world where agriculture and over-irrigation are present, the process could account for the storage of about 1 trillion tons of carbon. In sandy soil, when plants soak up CO2, some of it leaches into the ground. Microbes that break up plant nutrients also contribute. Because conditions are arid, desert farmers have to irrigate more; the extra water dissolves the CO2 and deposits it in the aquifer below. The carbon is then stored in these geological structures covered by thick layers of sand and may never return to the atmosphere. Collectively, the world?s underground desert aquifers cover an area the size of North America and may account for at least a portion of the ?missing carbon sink?. Knowing the precise location of these underground carbon sinks will thus prove extremely important to improve carbon-stock models. If the extent of the carbon trapping is really this large, then farmers could work together with authorities to manage the carbon that goes underground. The aquifer C-sinks protocol would calculate the area of arid and semiarid aquifers that could be potentially farmed based on integrated remote sensing and GIS. The Gravity Recovery and Climate Experiment (GRACE) mission should provide accurate data of aquifer size and distribution when data are missing. The protocol would help governments to prioritize and incentivize certain areas for farming. # 2.8 Air Quality Protocol Air pollution is currently one of the most important environmental issues in many regions around the world. Apart from its direct impacts on human health and climate change, air pollutants can also adversely affect ecosystems, which can indirectly impact human health and welfare through food and water contamination. Satellite remote sensing is a good complement for ground-based data and air quality models. While ground-based air quality sites provide the most accurate measurements of air quality at a specific location, satellite imagery provides data with global, consistent coverage. Since variations in air quality are complex in time and space, the air quality protocol would take into account many different data sources and identify pollution hotspots, highlight relationships between the spatial and temporal distribution of pollution, and allow ecological claims to be made about an increase in air quality and a decrease in pollution. # 3 Carbon Sequestration Indicators #### 3.1 Soil Carbon The different techniques used for determining Soil Organic Carbon (SOC) based on remote sensing employ the shape of the reflectance spectrum, for example by using band depth analysis and principal component analysis. Alternatively, multivariate regression modeling such as Partial Least-Square Regression (PLSR) and multiple linear regression can be used. By means of these methods, different topsoil parameters are determined from the spectral signature contained in a single imaging spectrometer image, where the various variables are represented by different combinations of absorption features across the spectra. Spaceborne imaging spectrometer data have not often been used for predicting soil organic carbon, but advanced spectral unmixing methods applied to Hyperion data have obtained similar SOC fractions as those in field observations [MDBSM11]. When mapping soil organic carbon on a large scale without extensive calibration with soil samples, a solution could be to use indices based on spectral reflectance. The amount of SOC is then detected with reflectance spectroscopy based on the constituents of SOC: cellulose, starch, and lignin. Good relations have been found for indices based on the visible part of the spectrum (R2=0.80) and for the absorption features related to cellulose (around 2100 nm) (R2=0.81) [BSK+08]. Alternative approaches to determining exact soil carbon include Regression kriging of predictor variables (Tasseled cap brightness, greenness and wetness indices, NDVI, Vegetation Temp. Cond. Index [VTCI], DEM, slopes, Compound Topography Index [CTI] and Leaf Area Indices for grasslands) [MKK+17], and the construction of soil indices based on brightness, darkness, and greenness [QZT+17]. # 3.2 Biological Indicators The relation between nutrient requirements of plants and nutrient availability in soils can be used to derive soil attributes. Accordingly, the concept of plant functional types (PFT) can be used to derive the specific type or group of species that grow on typical soils. Functional types can be distinguished largely on the basis of optical properties detectable by remote sensing. To fully utilize the potential of remote sensing, data must be
combined with ecological models linking structural, physiological, and phenological traits based on resource constraints. Hence, PFT regulate or are regulated by ecosystem processes and have discrete different functions within the ecosystems. Different PFT have a particular distribution in relation to geography or environment, e.g. species of ultramafic soils or acidophilus bog species. Therefore, PFT could be explained by the DEM derived terrain variables which describe the landscape structure [UG10]. In addition to PFT, Ellenberg indicator values can be used as a numerical system to classify species? habitat niches and their peak occurrence along gradients. By finding correlations of Ellenberg indicator values with morphological or eco-physiological properties, it is possible to identify determinants of species distributions with respect to environmental factors. Schmidtlein showed that imaging spectroscopy can be used as a tool for mapping Ellenberg indicator values for soil water content, soil pH, and soil fertility [Sch05]. The Ellenberg indicator values scale the flora of a region along gradients reflecting light, temperature, moisture, soil pH, fertility, and salinity. In this way, the flora can be used to monitor environmental change and thereby changes in the soil [WMS⁺14]. # 3.3 Above Ground Biomass (AGB) Accurate measurement and mapping of biomass is a critical component of the proposed carbon sequestration protocol. The Intergovernmental Panel on Climate Change (IPCC) has listed five terrestrial ecosystem carbon pools involving biomass: above-ground biomass, below-ground biomass, litter, woody debris, and soil organic matter. Of these five, above-ground biomass (AGB) is the most visible, dominant and dynamic pool of the terrestrial ecosystem, constituting around 30 percent of the total terrestrial ecosystem carbon pool. While detailed estimates of biomass are necessary for accurate carbon accounting (biomass as dry weight is 50 percent carbon), there are few reliable estimation methods. Biomass derived from field data measurements is the most accurate, but it is not a practical approach for broad-scale assessments. Using remote sensing has a key advantage; it can provide data over large areas at a fraction of the cost associated with extensive sampling and enables access to inaccessible places. Data from remote sensing satellites are available at various scales, from local to global, and from a number of different platforms. Optical remote sensing probably provides the best alternative to biomass estimation through field sampling due to its global coverage, repetitiveness, and cost-effectiveness. Optical Remote Sensing data is available from a number of platforms, such as IKONOS, Quickbird, Worldview, SPOT, Sentinel, Landsat, and MODIS. New space-borne sensors to be launched in the coming years will allow accurate measurements of AGB in high biomass forests (less than 200 t ha-1) for the first time across large areas [RVWL⁺17]. Recent developments in high resolution space-borne and airborne satellite data have provided an opportunity to better estimate and map AGB across different spatial and temporal scales. The use of drones and UAVs has opened up avenues for super-fine resolution biomass estimation for targeted applications. Recent sensors, such as the Worldview series, now provide meter level spatial resolution while Sentinel and Landsat 8 provide free data for the whole world, opening up accessibility and more applications of Remote Sensing data, including for biomass estimation. Radar Remote Sensing has gained prominence for above-ground biomass estimation in recent years due to its cloud penetration ability as well as detailed vegetation structural information. Light Detection and Ranging (LiDAR) has the ability to sample the vertical distribution of canopy and ground surfaces, providing detailed structural information about vegetation. This leads to more accurate estimations of basal area, crown size, tree height, and stem volume. A number of studies have established strong correlations between LiDAR parameters and above-ground biomass [ABP+18] [KM17]. # 3.4 Surface Water Quality By monitoring water quality parameters (i.e. suspended sediments [turbidity], chlorophyll, and temperature), it is possible to assess wetland degradation or changes in their carbon sequestration capacity [JFH12]. Optical and thermal sensors can provide both spatial and temporal information needed to monitor changes in water quality parameters. Integration of remotely-sensed data, GPS, and GIS technologies provide a valuable tool for monitoring and assessing waterways and wetlands [RZE03]. Remotely-sensed data can be used to create a permanent geographically located database to provide a baseline for future comparisons. The spectral characteristics of water and pollutants—which are functions of the hydrological, biological and chemical characteristics of water—are essential factors in the monitoring and assessment of water quality. The different methodologies to interpret images and to evaluate the turbidity are non-linear multiple regression, principal components analysis (PCA) and neural networks. Colored Dissolved Organic Matters (CDOM) in water can be determined using hyperspectral imagery like EO-1/Hyperion, EO-1/ALI, and ALOS/AVNIR-2. In addition, high-resolution spectroradiometer can be used for in situ hyperspectral measurements for validation purposes [GMR16]. #### 3.5 Water and Nutrient Runoff Agriculture intensification and expansion causes soil deterioration, which implies a lower capacity of soil carbon and nutrient retention, and thus higher export loadings of nutrients from non-point sources to downstream surface water bodies during and after storm events. Nutrients are then transported by surface and subsurface runoff, contributing to non-point source pollutions of surface waters. Water runoff volumes can be estimated by the Curve Number Method. The Soil Conservation Service Curve Number (SCS-CN or NRCS-CN) method is a simple, widely used, and efficient procedure for determining the expected amount of runoff from rainfall in a particular area. Coupled with thematic maps like LULC maps, soil types and climate maps, and hydrological tools in GIS, the NRCS-CN method can be used to calculate the runoff transport and accumulation through the watershed. CN is an empirical parameter used for predicting direct runoff or infiltration from rainfall excess. Regardless of some weaknesses, the CN method presents some advantages such as quantification of the effect of land use changes on runoff formation [RH00]. The widespread popularity of the NRCS-CN method attributes to the wide availability of the required data and its simplicity. As result, the NRCS-CN method, which was originally intended for the study of agricultural land, became a fundamental part of hydrological practice and was adopted for application in different climates and conditions. Moreover the CN method has been integrated into different hydrological models, including CREAMS, FEST, EPIC, AGNPS, HEC-HMS, and SWAT. Some of these models have been used used to calculate runoff in GIS, like the AnnAGNPS or the SWAT (ArcSWAT). Empirical or locally measured event mean concentrations (EMCs) for different water quality parameters such as BOD, COD, ammonia, nitrate, TKN, hardness, TDS, TSS, chlorides, sulfates, phosphate, fluorides, and TC are often available for many agricultural areas and can be used to calculate the amounts of nutrients in the runoff after a storm event in GIS. Also, models like AnnAGNPS and SWAT have shown good results when estimating nutrients in runoff. #### 3.6 Land Conversion Land-cover change and management can alter the amount of organic carbon stored in the soil and this in turn affects both soil fertility and atmospheric carbon dioxide concentrations. There is empirical information that could be used along with LULC maps to globally map and monitor changes in carbon stocks due to land conversion. | | Mean Sequestration Rate | | Level of Certainty | | |---|--|---------------|---------------------|--------------------------------| | Land Use Change | Metric tons CO ₂
equivalents acre ⁻¹
yr ⁻¹ ± S.D. | Relative Rate | about the mean rate | that carbon
sequestration > | | Annual row crop to short-
rotation woody crops | 7.0 ± 2.6 | High | High | Very High | | Annual row crop to forest | 5.5 ± 1.8 | High | High | Very High | | Prairie pothole restoration | 4.5 ± 6.9 | High | Low | Very High | | Annual row crop to perennial grassland | 1.6 ± 1.6 | Medium | Low | High | | Turfgrass to urban woodland | 0.9 ± N.A. | Medium | Low | Very High | | Enhanced forest stocking | 0.8 ± 1.0 | Medium | Low | High | | Peatland restoration | 0.74 ± 0.4 | Low | Medium | Very High | | Inclusion of cover crops in row crop rotation | 0.6 ± 0.3 | Low | Medium | High | | Annual row crop to pasture / hayland | 0.4 ± 0.1 | Low | High | High | | Conventional to conservation tillage | 0.3 ± 0.5 | Very Low | Low | Very Low | | Low diversity to high diversity grassland | 0.1 ± 1.39 | Very Low | Low | Very Low | Figure 1: Estimated Carbon Sequestration Potential [NM08] ## 3.7 Biodiversity Recognizing the imperative need for biodiversity protection, the Convention on Biological Diversity (CBD) has recently established new targets towards 2020, the so-called Aichi targets, and updated proposed sets of indicators to quantitatively monitor the progress towards these targets. There are generally three ways to measure ecosystem variables: 1. functional processes measured as fluxes, using in situ sensors, - 2. precise monitoring of composition, abundance, extent and change, is commonly done by in situ monitoring through habitat surveillance combined with vegetation plots, - 3. structural change
monitoring using in situ combination with remote sensing from space, aircraft, or drone [JSM⁺17]. Some of the important biodiversity indicators that are required for building prediction models could be measured in enough detail by using high-resolution remote sensing data collected with UAVs [SVN+18]. Remote sensing has been increasingly contributing to timely, accurate, and cost-effective assessment of biodiversity-related characteristics and functions during the last years. Novel approaches integrating multi-sensor acquisitions can help to improve the understanding of the various environmental, physical, climatic, and human factors influencing biodiversity, by monitoring spatial and temporal variations in species composition. Several biodiversity-related international projects have recently been implemented, such as the 7th European Framework Programme (FP7), MS.Monina (Multi-scale Service for Monitoring Natura 2000 Habitats of European Community Interest), and BIO SOS (Biodiversity multi-Source monitoring System: from Space to Species); the latter two focusing on biodiversity monitoring from space [PMS15]. ## 3.8 Sediment Delivery and Soil Loss Due to Erosion The loss of soil leads to a decline in organic matter and nutrient content, the breakdown of soil structure and a reduction of the available soil water stored, which can lead to an enhanced risk of flooding and landslides in adjacent areas. Nutrient and carbon cycling can be significantly altered by mobilization and deposition of soil, considering eroded soil may lose 75 - 80 percent of its carbon content, with consequent release of carbon to the atmosphere [eur18]. The total land area subjected to human-induced soil degradation is estimated at about 2 billion hectares. From this, the land area affected by soil degradation due to erosion is estimated at 1100 Mha by water erosion and 550 Mha by wind erosion. Using conventional methods to assess soil erosion risk is expensive and time-consuming. The soil loss model, Revised Universal Soil Loss Equation (RUSLE), can be integrated with GIS in order to estimate soil loss [EJBG⁺17] [And10]. The RUSLE model can predict erosion potential on a cell-by-cell basis, which is effective when attempting to identify the spatial pattern of the soil loss present within a large region. GIS can then be used to isolate and query these locations to identify the role of individual variables contributing to the observed erosion potential value. The soil erosion assessment depends upon the regional characteristics of the area, namely climate, soil condition, land use/land cover, topography, and lithology. A DEM (Digital Elevation Model) is one of the essential inputs required for soil erosion modelling. Other inputs include thematic factor maps that can be generated in GIS from climate and geological data, and landsat images. # 3.9 Net Primary Productivity (NPP) Net primary productivity (NPP) is an indicator of land productivity. NPP represents how much carbon dioxide vegetation takes in during photosynthesis minus how much carbon dioxide the plants release during respiration (metabolizing sugars and starches for energy). Land productivity can be assessed through estimates of NPP (tDM/ha/yr), where a change in the absolute numerical value may be positive or negative. NPP can be quantified using indices derived from Earth observation data such as the Normalized Difference Vegetation Index (NDVI) or Enhanced Vegetation Index (EVI). Dry Matter Productivity (DMP) represents the overall growth rate or dry biomass increase of the vegetation, expressed in kilograms of dry matter per hectare per day (kgDM/ha/day). DMP is directly related to NPP, but its units are customized for agro-statistical purposes. According to Atjay et al. (1979), the efficiency of the conversion between carbon and dry matter is on the average 0.45 gC/gDM. DMP images available at Copernicus Hub, derive from SPOT-VGT (until December 2013) and PROBA-V (from January 2014) imagery combined with (modeled) meteorological data from ECMWF, are made available at 1km resolution and are updated every 10 days. Also new products are being prepared at 300m and 100m resolution. Similar products could be built for moderate to high resolution images by following methods from the Copernicus Global Land Operations? Vegetation and Energy" [WWLF]. #### 3.10 Covariables | Covariables | Scale/type | Source of infor- | Indicators af- | |------------------|----------------|-----------------------|----------------------| | | | mation | fected | | Climate: hu- | Landscape/ | Multitemporal se- | Changes in area | | midity, rainfall | remote sensing | ries data of rainfall | of surface waters. | | | and pluvio- | events, or accu- | Changes in runoff | | | metric maps | mulated rainfall | volumes between | | | | thematic maps | years. Changes | | | | from meteorolog- | in hydric erosion | | | | ical databases. | gullies (increase in | | | | Intensity of rainfall | number or sizes) | | | | events. | | | Soil moisture | Landscape/ re- | Topographic | AGB, NPP, soil | | | mote sensing | Wetness Index | erosion, runoff | | | | (TWI), Temper- | | | | | ature?Vegetation | | | | | Dryness Index | | | | | (TVDI), Vegeta- | | | | | tion Temperature | | | | | Condition Index | | | | | (VTCI) | | #### 3.11 Climate: Rainfall When analyzing changes in ecosystems or species that are directly affected by the availability of water, it might be necessary to perform very long-term monitoring in order to detect changes due to other causes, like land management or other anthropic impacts. Otherwise, the weather variable should be somehow considered or subtracted from the data in order to ?denoise? the data and find patterns. For example, changes in the area of surface water bodies could vary between years according to both anthropic and climatic causes. A wetland that shows erratic changes in size through a 10 year period could be indeed shrinking or increasing its area due to drainage, irrigation, or channelization practices in the area. However, some rainy years could mask the real trend so that it could be detected after more than 15 years, which may be too late for mitigation. #### 3.12 Soil Moisture Soil moisture influences many potential indicators for carbon monitoring like soil erosion, AGB, NPP, and water and nutrient runoff. So, measuring and monitoring soil moisture variations in time could help to denoise the measures from these indicators and identify changes due to human actions in moderate time periods. Soil moisture changes can be monitored by remote sensing and GIS: - $\bullet\,$ Soil Water Index (SWI) with a resolution of 1 km? tracks relative soil water content - Recently launched microwave SMOS (Soil Moisture and Ocean Salinity) - Future satellite SMAP (Soil Moisture Active Passive), temporal resolution of 3-5 days and 1 km resolution - Surface energy balance models with ASTER and MODIS images as surface variables - Soil Energy BALance (SEBAL), - Two-Source Energy Balance (TSEB) - Surface Energy Balance System (SEBS) # 4 Main Indicators for Carbon Sequestration | Indicator | Predictors | Data type | Data sources | |-------------|-----------------------|-------------------|-------------------| | Above | Combination of | Radar, LiDAR, | RapidEye, UAV | | Ground | different sources | and optical re- | datasets, World- | | Biomass | of spectral data, | mote sensing | view, SPOT, | | (AGB) | radar (SAR), Land | imagery. Some- | Sentinel, Landsat | | | Use/Land Cover | times terrestrial | and MODIS, | | | (LULC) maps, | samplings are | SAR platforms. | | | terrain sampling, | needed. | | | | Regression mod- | | | | | els, classifications. | | | | | Algorithms (e.g. | | | | | BIOMASAR). | | | | Land Con- | Changes in LULC | Spaceborne sen- | Landsat TM, | | version | maps, vegetation | sors, hyperspec- | ALOS/AVNIR- | | | indices, Forest | tral imagery on | 2, IKONOS . | | | Canopy Density | airborne sensors | EO-1/Hyperion, | | | model (FCD) | | EO-1/ALI, and | | | | | ALOS/AVNIR-2 | | Net Primary | NPP (tDM/ha/yr) | UAV or air- | Sentinel, Land- | | Production | can be quantified | borne remote | sat, Modis | | (NPP) | using indices de- | sensing spec- | | | | rived from earth | tral composites | | | | observation data | (i.e. vegetation | | | | such as the Nor- | indices) | | | | malized Difference | | | | | Vegetation Index | | | | | (NDVI) or En- | | | | | hanced Vegetation | | | | | Index (EVI). | | | | Biodiversity | CBD Indicators Habitat rarity (InVEST) Habitat Quality (InVEST) Habitat Connectivity (FRAGSTATS) Habitat fragmentation (FRAGSTATS) Indicator Species. | LiDAR, UAV, and optical remote sensing imagery, and derived thematic maps. Mapable data showing changes in the distribution and/or richness | Sentinel, Landsat, Modis, Copernicus, Big Data | |---------------------------|---|---|--| | | | patterns of certain indicator species under monitoring programs can be downloaded from Big Data. | | | PFT/Ellenber | | UAV or air- | DEMs, LULC, | | | composites and vegetation indices, or from multisource evidential reasoning (ER) algorithm. | borne remote
sensing spec-
tral composites
(e.g. vegetation
indices), local
calibration | soil maps from
various plat-
forms. | | Soil Erosion | Compound Topographic Index (CTI) or TWI, RUSLE or RUSLE2/GIS methodology. | Radar, LiDAR,
and Optical
remote sens-
ing. Thematic
Maps for RUSLE
factors. | DEMs, LULC, soil maps from various platforms | | Water and nutrient runoff | Curve Number from the Soil
Conservation Service of the US (SCS-CN) Nutrient runoff estimates from models, e.g. Swat, AnnAGNPs. | Radar and Optical remote sensing, local calibration from terrain surveys, Empirical data, and equations. Hydrological tools in GIS. | Thematic maps: DEMs, LULC maps, climate maps, soil type maps. Empirical equations and values (e.g. SCS- CN equations, EMCs values) | | Soil Organic | Multivariate re- | Hyperspectral | Updated satellite | |--------------|---------------------------------------|------------------|-------------------| | Carbon | gression modeling | imagery from | hyperspectral im- | | | such as Partial | Orbital, UAV, or | agery databases, | | | Least-Square Re- | airborne remote | drone imagery. | | | gression (PLSR) | sensing | | | | and multiple linear | Somoning | | | | regression based on | | | | | soil color attributes | | | | | (visible bands). | | | | | Indices based on | | | | | spectral reflectance | | | | | Regression krig- | | | | | ing of predictor | | | | | variables: Tasseled | | | | | | | | | | | | | | | greenness and wetness indices, | | | | | · · · · · · · · · · · · · · · · · · · | | | | | NDVI, Vegetation | | | | | Temp. Cond. In- | | | | | dex (VTCI), DEM, | | | | | slopes, Compound | | | | | Topography In- | | | | | dex (CTI)- Leaf | | | | | Area Indices for | | | | G. C | grasslands | G 1 | T 1 / (T) 4 | | Surface wa- | Turbidity, TSS, | Spaceborne sen- | Landsat TM, | | ter quality | Chl-a, CDOM | sors, hyperspec- | ALOS/AVNIR- | | | | tral imagery on | 2, IKONOS. | | | | airborne sensors | EO-1/Hyperion, | | | | | EO-1/ALI, and | | | | | ALOS/AVNIR-2 | # References - [ABP+18] Gregory P Asner, Philip G Brodrick, Christopher Philipson, Nicolas R Vaughn, Roberta E Martin, David E Knapp, Joseph Heckler, Luke J Evans, Tommaso Jucker, Benoit Goossens, et al. Mapped aboveground carbon stocks to advance forest conservation and recovery in malaysian borneo. Biological Conservation, 217:289–310, 2018. - [And10] Linus Andersson. Soil loss estimation based on the usle/gis approach through small catchments-a minor field study in tunisia. 2010. - [BLMP17] Pasquale Borrelli, Emanuele Lugato, Luca Montanarella, and Panos Panagos. A new assessment of soil loss due to wind erosion in european agricultural soils using a quantitative spatially distributed modelling approach. Land Degradation & Development, 28(1):335–344, 2017. - [BSK+08] HM Bartholomeus, ME Schaepman, Lammert Kooistra, Antoine Stevens, WB Hoogmoed, and OSP Spaargaren. Spectral reflectance based indices for soil organic carbon quantification. Geoderma, 145(1-2):28-36, 2008. - [EJBG⁺17] Aafaf El Jazouli, Ahmed Barakat, Abdessamad Ghafiri, Saida El Moutaki, Abderrahim Ettaqy, and Rida Khellouk. Soil erosion modeled with usle, gis, and remote sensing: a case study of ikkour watershed in middle atlas (morocco). Geoscience Letters, 4(1):25, 2017. - [eur18] Agri-environmental indicator soil erosion, 2018. - [Eyk17] Sarah Eykyn, January 2017. - [For03] Richard TT Forman. Road ecology: science and solutions. Island Press, 2003. - [GMR16] Mohammad Haji Gholizadeh, Assefa M Melesse, and Lakshmi Reddi. A comprehensive review on water quality parameters estimation using remote sensing techniques. *Sensors*, 16(8):1298, 2016. - [inv18] 2018. - [IUC17] IUCN. Summary statistics. http://www.iucnredlist.org/about/summary-statistics, 2017. - [JFH12] Alison Curtin John Foster, Lisa Evans and Brydie Hill. The role of wetlands in the carbon cycle. issues paper the role of wetlands in the carbon cycle. www.environment.gov.au/water/wetlands/ - publications/issues-paper-wetlands-role-carbon-cycle, 2012. - [JSM⁺17] Rob HG Jongman, Andrew K Skidmore, CA Sander Mücher, Robert GH Bunce, and Marc J Metzger. Global terrestrial ecosystem observations: why, where, what and how? In *The GEO hand-book on biodiversity observation networks*, pages 19–38. Springer, 2017. - [KM17] Lalit Kumar and Onisimo Mutanga. Remote sensing of above-ground biomass, 2017. - [KVC⁺07] Alexandra-Maria Klein, Bernard E Vaissiere, James H Cane, Ingolf Steffan-Dewenter, Saul A Cunningham, Claire Kremen, and Teja Tscharntke. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society of London B: Biological Sciences, 274(1608):303–313, 2007. - [LWHT15] Yan Li, Yu-Gang Wang, RA Houghton, and Li-Song Tang. Hidden carbon sink beneath desert. Geophysical Research Letters, 42(14):5880–5887, 2015. - [McK02] Michael L McKinney. Urbanization, biodiversity, and conservation: the impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. BioScience, 52(10):883–890, 2002. - [MDBSM11] VL Mulder, S De Bruin, ME Schaepman, and TR Mayr. The use of remote sensing in soil and terrain mapping?a review. *Geoderma*, 162(1-2):1–19, 2011. - [MKK+17] Arun Mondal, Deepak Khare, Sananda Kundu, Surajit Mondal, Sandip Mukherjee, and Anirban Mukhopadhyay. Spatial soil organic carbon (soc) prediction by regression kriging using remote sensing data. The Egyptian Journal of Remote Sensing and Space Science, 20(1):61-70, 2017. - [NM08] Edward A Nater and Cheryl Miller. Terrestrial carbon sequestration monitoring networks and demonstration sites. part ii, report to the minnesota department of natural resources from the minnesota terrestrial carbon sequestration initiative. 2008. - [NVJS01] Christian Nellemann, Ingunn Vistnes, Per Jordhøy, and Olav Strand. Winter distribution of wild reindeer in relation to power lines, roads and resorts. *Biological Conservation*, 101(3):351–360, 2001. - [PMS15] Zisis I Petrou, Ioannis Manakos, and Tania Stathaki. Remote sensing for biodiversity monitoring: a review of methods for biodiversity indicator extraction and assessment of progress towards international targets. *Biodiversity and conservation*, 24(10):2333–2363, 2015. - [QZT⁺17] Bingwen Qiu, Ke Zhang, Zhenghong Tang, Chongcheng Chen, and Zhuangzhuang Wang. Developing soil indices based on brightness, darkness, and greenness to improve land surface mapping accuracy. GIScience & Remote Sensing, 54(5):759–777, 2017. - [RH00] DeAnne Rietz and Richard H Hawkins. Effects of land use on runoff curve number. In Watershed Management and Operations Management 2000, pages 1–11. 2000. - [RVWL⁺17] Pedro Rodríguez-Veiga, James Wheeler, Valentin Louis, Kevin Tansey, and Heiko Balzter. Quantifying forest biomass carbon stocks from space. *Current Forestry Reports*, 3(1):1–18, 2017. - [RZE03] Jerry C Ritchie, Paul V Zimba, and James H Everitt. Remote sensing techniques to assess water quality. *Photogrammetric Engineering & Remote Sensing*, 69(6):695–704, 2003. - [Sch05] Sebastian Schmidtlein. Imaging spectroscopy as a tool for mapping ellenberg indicator values. *Journal of Applied Ecology*, 42(5):966–974, 2005. - [SVN⁺18] Ninni Saarinen, Mikko Vastaranta, Roope Näsi, Tomi Rosnell, Teemu Hakala, Eija Honkavaara, Michael A Wulder, Ville Luoma, Antonio MG Tommaselli, Nilton N Imai, et al. Assessing biodiversity in boreal forests with uav-based photogrammetric point clouds and hyperspectral imaging. *Remote Sensing*, 10(2):338, 2018. - [UG10] Susan L Ustin and John A Gamon. Remote sensing of plant functional types. *New Phytologist*, 186(4):795–816, 2010. - [UNA18] UNAVCO. Synthetic aperture radar (sar) satellites https://www.unavco.org/instrumentation/geophysical/imaging/sar-satellites/sar-satellites.html, 2018. - [WMS⁺14] Hendrik Wulf, Titia Mulder, Michael E Schaepman, Armin Keller, and P Jörg. Remote sensing of soils. *University of Zurich: Zurich, Switzerland*, pages 1–71, 2014. - [WWLF] Nandika Tsendbazar WUR, Martin Herold WUR, Myroslava Lesiv, and Steffen Fritz. Copernicus global land operations vegetation and energy.